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A STUDY ON CONCENTRATION POLARIZATION IN 
ULTRAFILTRATION 

S .  Ilias' R. Govind 
Department of Chemical Engineering 
North Carolina A&T State University 
Greensboro, NC 27411 

Department of Chemical Engineering 
University of Cincinnati 
Cincinnati, OH 45221 

ABSTRACT 

A finite-difference solution of coupled transport equations for momentum and 
solute continuity is presented to model the concentration polarization in a tubular 
ultrafiltration (UF) system. The model includes the effects of solute osmotic 
pressure and solute rejection at the membrane surface, axial pressure drop and 
resistance of the gel layer. This provides a fundamental understanding of the 
dynamics of various operating parameters on concentration polarization and 
transmembrane flux. Simulation results are presented for a wide range of 
operating variables to show their effects on local variation of solute concentration 
and transmembrane flux. The numerical results were also compared with 
previously published experimental data, which shows that a concentration 
polarization model based on constant membrane permeability (usually obtained 
from pure water flux data) grossly overestimates the flux behavior. If the effect 
of gel polarization is included, the model can predict the actual permeate flux 
very closely. Thus, in modeling ultrafiltration, one needs to be careful in using 
the appropriate membrane permeability terms. The commonly used intrinsic 
membrane permeability which is usually a constant, may not describe the true 
flux behavior in ultrafiltration. Actually the nature of the feed, solute-surface 
interaction and gel layer formation control the effective permeability, which 
varies axially along the membrane length. 
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INTRODUCTION 

ILIAS AND GOVIND 

Ultrafiltration (UF) is a simple and convenient membrane filtration process 
for concentration, purification and separation of macromolecules, colloids and 
suspended particles from solutions. In recent years, due to advances in asymmet- 
ric membranes and improved module designs, UF systems have found wide 
acceptance in many industrial and laboratory applications (1). In many industrial 
applications UF systems are favored over other traditional separation methods due 
to their low energy requirement and athermal character. However, the decline of 
flux in UF processes still remains a major concern, which is attributed to 
‘concentration polarization’ (CP) and membrane ‘fouling’ (2). 

Concentration polarization is described as the build-up of solutes close to 
or on the membrane surface due to convective-diffusive transport of solutes in the 
boundary layer. This results in an increase in both resistance to solvent transport 
and the local osmotic pressure, which reduces the permeation rate. The operating 
parameters that usually affect concentration polarization are velocity, pressure, 
temperature and feed concentrations. On the other hand, fouling is the deposition 
and accumulation of suspended and colloidal particles on the membrane surface, 
including crystallization, precipitation or adsorption of solutes on the membrane 
surface and within the pores. This results in lowering of flux and/or increase in 
rejection of solutes. Fouling is usually an irreversible and time-dependent 
phenomenon, which distinguishes it from concentration polarization (3-5). 

In membrane separation systems, it is difficult to distinguish the relative 
role of CP and fouling in observed flux decline, as both of them tend to lower the 
flux. It is known that in a UF system, the initial flux decline is generally 
attributed to rapid buildup of a fouling layer and then the flux approaches a 
constant, steady-state value. Such a flux decline may last from a few minutes to 
several hours depending on membrane materials, feed composition and operating 
conditions. Thus, an understanding of the mechanics of flux decline phenomena 
is important for both optimum operation and control of underlying causes for 
concentration polarization and fouling in UF system. 

BACKGROUND 

In order to analyze the problem of concentration polarization, one must 
understand the transport phenomena at the membrane-solute interface. In the past, 
numerous efforts have been made to develop models to predict concentration 
polarization and its effect on transmembrane flux. For modeling purposes, usually 
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CONCENTRATXON POLARIZATION IN ULTRAFILTRATION 363 

a thin-channel (parallel plate) or tubular membrane module is considered as a 
model element. In most cases, model development starts with the fundamental 
equations of fluid flow and solute continuity, which are given as (6): 

- -  Do -pvy'  
Dt 

Dv- 
Dt 

p- - -vp - p*- 

@ - D,dLc 
Dt 

(3) 

Equations 2 and 3 are non-linear elliptic equations which are coupled via 
wall permeation velocity and solute concentration at the membrane surface. These 
equations are equally applicable to reverse osmosis and ultrafiltration membrane 
processes. For solution of these PDE's, the boundary conditions on the entire 
solution domain are required to be specified, which are obviously not known a 
priori in UF systems. Thus to obtain analytical or numerical solution, one has to 
make use of some assumptions to simplify the equations which represent the 
phenomena. 

Probably, Dresner (7), Fisher et al. (8), Shenvood et al. (9), Brian (10) 
and Gill et al. (1 1) are the first few investigators who attempted to analyze the 
concentration polarization in reverse osmosis using transport Eqs. 1-3. Dresner 
(7) analyzed the thin-channel problem under laminar flow conditions for a case 
of complete solute rejection and constant wall permeation flux. With these 
assumptions, the transport equations were decoupled and, using the velocity field 
given by Berman (12), Dresner (7) obtained an approximate solution for 
concentration polarization. Fisher et al. (9) modified Dresner's solution and 
applied it to tubular membranes. Sherwood et al. (9) solved the same problem as 
Dresner (7) using a Graetz-type analogy. Brian (10) studied the same system but 
with variable wall flux conditions. Assuming that the osmotic pressure is 
proportional to salt concentration and that the transmembrane pressure drop is 
insignificant, Brian obtained a concentration-dependent wall-permeation velocity. 
To solve the diffusion equation by a finite-difference method as a part of an 
iterative scheme, Brian used the fluid flow field given by Berman (12), but 
excluded the terms containing the wall Reynolds number. Gill et al. (11) also 
solved the same problem using a perturbation series solution. 
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364 ILIAS AND GOVIND 

Since then, a large number of analyses of concentration polarization in 
thin-channel and tubular modules have appeared (13-22). A review of these works 
indicates that, in general, the transport equations for ultrafiltration and/or reverse 
osmosis membranes are decoupled and simplified by assuming one or more of the 
following modifications: 

1 .  The fluid flow field is approximated by some prescribed functions or by 
a reduced form of the momentum equation (usually some type of 
perturbation solution). 
The wall permeation velocity is constant or piece-wise constant along the 
axial length. 
The wall velocity may depend on osmotic pressure but axial pressure drop 
is neglected or an approximate pressure drop is used without solving the 
momentum equation. 
Analysis of membrane permeability is never detailed; instead an effective 
permeability is usually used. 
Usually constant fluid and transport properties are assumed. Some studies 
on the concentration dependence of viscosity and diffusivity on polariza- 
tion have also been reported. 

2. 

3. 

4. 

5 .  

The above discussion reveals that previous modeling efforts were 
essentially based on the decoupling of the transport equations and some major 
simplifications of wall permeation boundary conditions. However, a rigorous 
concentration polarization model would require solution of coupled transport 
equations with wall permeation conditions which would depend on.transmembrane 
pressure drop and solute concentration at the membrane interface. Thus, in this 
paper a revised model is presented which requires the solution of coupled 
transport equations along with appropriate wall permeation boundary conditions. 

MODEL DEVELOPMENT 

Consider a tubular ultrafilter membrane of radius r,. L is the effective 
length of the module. The feed stream inside the tube is laminar, incompressible 
(constant density and viscosity) and solute diffusivity is assumed to be constant. 
Before we consider the appropriate transport equations, let us consider the local 
transmembrane flux, v,, which is given by (23): 

V, - A,(Ap - AX)  (4) 
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CONCENTRATION POLARIZATION IN ULTRAFILTRATION 365 

For pure solvent as feed, v, is proportional to transmembrane pressure 
drop, Ap and the membrane permeability, A, is the proportionality constant. 
However, with feed solution, v, may not only depend on Ap and Au, but also 
strongly depends on A,, which cannot be assumed constant for various reasons 
as discussed below. 

In membrane filtration, following the resistance-in-series concept common 
in heat transfer, the permeability may be given by: 

1 
r,,,,,, + rd + rp Am - 

Here, rmw is the intrinsic resistance of the membrane, which is usually a constant 
and may be obtained from pressure-flux data of pure water as feed. The average 
transmembrane flux, J is given as: 

AP J - AmAp - - 
' m w  

The pressure-flux relationship given by Eq. 6 is strictly applicable to 
clean, unfouled membrane. The resistance of the fouling layer, r,, which is due 
to build-up of deposits on the membrane surface, is responsible for observed flux 
decline. In ultrafiltration of macromolecules and dilute suspensions, the thickness 
of the fouling layer increases as filtration proceeds, resulting in decline of flux 
at constant pressure. Using the conventional filtration theory of particulates, one 
may approximate r,, the dynamic resistance, as: 

If the resistance of the polarization layer, rp, is assumed to be insignificant in 
absence of pore blockage, the flux is given by (24): 

Equation 8 may be rearranged to give: 
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366 ILIAS AND GOVIND 

The previous equation suggests that a plot of 1/J vs Q, for constant 
pressure filtration will yield a straight line. Thus, for a given system, from the 
slopes of two sets of data taken at different Ap, one may evaluate the independent 
constants 4 and s, provided w, Q,, p,  A, and Ap are known. With the known 
values of I#J and s, the dynamic resistance can now be computed from Eq. 7. 
Although this analysis is more appropriate to microfiltration (24), there has been 
some reported success of this approach in ultrafiltration (25-28). 

As discussed earlier, after the initial flux decline, it is the concentration 
polarization that dictates the transmembrane flux, which essentially remains 
constant during filtration. At this point, besides the resistances due to the 
membrane and the fouling layer, the resistance of the polarization layer needs to 
be accounted for in the flux calculation. The polarization layer resistance consists 
of two resistances: rm due to the gel polarized layer and rpa due to tne associated 
boundary layer. The evaluation of these resistances is not straightforward. One 
commonly used approach is to use the film theory model, which is applicable 
only to the concentration boundary layer (29-31). Cheryan (1) suggested that rp 
may be taken as a function of applied pressure, i.e., 

rp - OAp (10) 

where, ip is a function of the variables affecting the mass transfer properties of 
the system and may be obtained experimentally. 

From their experimental study on polarization of polyvinyl alcohol (PVA) 
and ovalbumin aqueous solutions in ultrafiltration, Nakao et al. (32) reported that 
the resistance of the gel-polarized layer can be expressed as: 

where a, is a proportionality constant,which depends on the type of macromolec- 
ules, while the power a, was found to be a constant independent of the kind of 
macromolecules, module geometry and operating conditions. The estimated value 
of a, was 1.7. The values of a,, for polyvinyl alcohol and ovalbumin are 
1.961EO5 and 4.413E04, respectively, when the resistance r, in Eq. 11 is 
expressed in kPa-s-cm". 

From the above discussion, it is now clear that at present, we do not have 
appropriate models for all the resistances needed to compute transmembrane flux. 
However, it seems logical to overcome this difficulty by substituting an effective 
membrane resistance, r, for r,, and r,. Further, we can use Eq. 11 for the 
resistance of the gel-layer and, by including the osmotic-pressure effect for non- 
linear flux-pressure behavior, the flux can be related to: 
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CONCENTRATION POLARIZATION IN ULTRAFILTRATION 367 

A p  - A X  J -  
r m  + ' p  

Note that the flux given by the above equation is nothing but the average 
flux for a given ultrafiltration system. But, in a flow system such as a thin- 
channel or a tubular module, the concentration, c,, and the osmotic and 
transmembrane pressure vary along the length of the module. Thus, for the 
system under consideration, we can use local flux as: 

A p  - A X  

"m + ' p  
vw  - (13) 

Since we intend to model concentration polarization in a tubular membrane 
module, we can use parabolic type transport equations instead of elliptic equations 
by using axisymmetric flow and boundary-layer type approximations. Thus, for 
this case the appropriate governing equations in dimensionless form are given as: 

au 1 a 
az R aR 
- + --(RV - 0 (14) 

The wall Reynolds number, R%o and Peclet number, Pe,,,o are based on 
initial wall permeation velocity, vw0 and inside radius of the tubular membrane, 
ri. The boundary conditions for Eqs. 14 to 16 are as follows: 
At the inlet, Z = 0: 

(17) U(R,O) - UJR) - 2.0(1-RZ); V(R,O) - 0; C(R,O) - 1 

At the membrane wall, R = 1: 
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368 ILIAS AND GOVIND 

At the axis of symmetry, R = 0: 

The boundary conditions, Eq. 17 specify the inlet flow and concentration 
profiles. The inlet velocity profile may be either uniform (plug flow) or parabolic 
(Poiseuille flow). The concentration distribution of the feed solution at the inlet 
is assumed to be uniform. The boundary conditions at the membrane wall for the 
momentum and solute continuity equations is given by Eq. 18. No slip condition 
is assumed at the membrane surface. The momentum equation is coupled with the 
solute continuity equation by the wall flux and the solute mass balance of 
convective-diffusive transport at the membrane surface with solute rejection. The 
wall flux condition is determined by the axial transmembrane pressure drop, 
concentration-dependent local osmotic pressure drop across the membrane and 
membrane resistances. If the resistance of the gel-polarized layer is neglected in 
the wall flux condition, then the model may be referred to as the ‘Concentration 
Polarization (CP) model’. Otherwise, the model may be regarded as the ‘Gel- 
polarization (GP) model’, where the resistance of the gel-polarized layer is given 
by Eq. 11, which depends on the local solute concentration at the membrane 
surface. Equation 19 assumes symmetry with respect to the centerline for 
axisymmetric flow and solute transport. 

METHOD OF SOLUTION 

Equations 14 to 16 are solved by a finite difference method implicit in R. 
A system of grid lines running in Z- and R-directions, i.e., i and j lines, are 
imposed on the solution domain. The axial grid lines are numbered from 1 to m, 
i.e., i = 1 being the inlet boundary (Z=O), while i =m is the last axial grid line 
(Z=Z,- )  of the solution domain. Similarly, transverse grid lines are numbered 
from 1 to n, where j=1, corresponds to the centerline (R=O) and the wall is 
matched at j = n  (R= 1). In the finite difference approximation, the convective 
terms U(dU/dZ), V(dU/dR), U(dC/dZ), and V(dC/dR) at interior grid point (i,j) 
were linearized by approximating the coefficients U and V at ( i- l j) ,  i.e. by 
taking the known velocities at the previous grid point. The second-order 
derivative terms were approximated by a three-point centered difference scheme. 
Equation 14 was discretized by a centered difference scheme by taking the 
derivatives at (i,j-1/2). The derivative boundary conditions at the axis of 
symmetry were approximated by three-point forward difference, while the 
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CONCENTRATION POLARIZATION IN ULTRAFILTRATION 369 

derivative condition at the membrane surface was given by a three-point backward 
difference formula. These boundary conditions were used to compute U and C 
at the wall and center of the tube. 

Following the above discretization schemes, finite difference approxima- 
tions of Eqs. 14 to 16 are derived as follows: 

FiCiJ_, + GiCij + HjCiJ+, - Ii for 2 s j s n-1 (22) 

where 
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370 ILIAS AND GOVIND 

with 

The derivative boundary conditions, Eqs. 18 and 19 are expressed as: 

An iterative procedure was developed to solve Eqs. 20 to 22 with 
necessary boundary conditions. The solution procedure is as follows: 

1. The velocity and concentration profiles on the inlet plane (i= 1 line) are 
specified. To compute the variables on the next line, i=2, a pressure 
gradient, dP/dZ and solute concentration at the wall, C, are assumed. 
The system of equations, E q .  21 is solved by the Thomas algorithm which 
gives the U-velocity distribution. The V-velocity distribution is then 
computed from Eq. 20. However, this solution will not, in general, satisfy 
Vi,n=V,, as required by the wall flux condition. 

2. 
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3. 

4. 

5 .  

6.  

7. 

8. 

With a second guess of pressure gradient, step 2 is repeated to compute 
U- and V-velocity distribution. This solution may again not satisfy 
Vi,,=VW from guess of C,. 
Using the values of Vi,D and pressure gradient in steps 2 and 3, an 
improved estimate of the pressure gradient that gives V,,, = V,, is found 
by linear interpolation. 
Step 3 is repeated to obtain U- and V-velocity distribution. If the wall flux 
condition is not satisfied within a preset value, then a new improved value 
of pressure gradient is obtained by interpolating the values of V,,, and 
pressure gradient in steps 5 and 3 or 2. The iteration is continued till the 
convergence in wall flux condition is achieved. 
With the converged flow field, Eq. 22 is solved to get the solute 
distribution on line i=2 and solute concentration on the membrane surface 
is obtained from Eq. 34. If the solute concentration C,,, is different from 
C, by more than the preset tolerance limit, a new improved guess of C, 
is obtained taking the average of the values. 
With the new value of C,, steps 2 to 6 are repeated until both the flow 
and concentration fields converge simultaneously. 
Once the solutions on line i=2 are found, the above procedure (steps 1 to 
7) is extended to next i-line and so on. 

In this work, for convergence of flow and concentration fields, I Vi,, - V, I 
s lod and I Ci,, - C, I S lo", were used as convergence criteria, respectively. 
No numerical difficulties were encountered in any of the simulation runs. 

The finite difference method just described may be readily applied to thin- 
channel or hollow-fiber UF systems. The effects of concentration-dependent 
viscosity and solute diffusivity can be easily accommodated in the present 
numerical scheme with minor modifications in programming, provided their 
functional relationships are known as functions of solute concentration. 

RESULTS AND DISCUSS ION 

In this paper, we have presented the simulation of concentration 
polarization in a tubular ultrafiltration membrane based on the solution of coupled 
transport equations. To broaden the understanding of various factors that affect 
the concentration polarization and transmembrane flux, numerical simulations 
were performed for a number of important operating and process variables. In all 
simulation runs, the dimension of the model ultrafiltration unit was 30 cm long 
and 1.25 cm diameter. PVA 224 aqueous solution was used as feed. A numerical 
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I 1 

T4/A Me rn b r a  n e 
Tube Dia: 1.25 cm 
Module Length: 30 9 

- Pressure: 10 kg/cm 
PVA Solut ion, 1% ( w t )  

I I I I I I 

,-. la- '  4 
T4/A Membrane 
Tube Dia: 1.25 cm 
Module Length:  30 
Pressure: 10 kg/crn 
PVA Solut ion. 1% ( w t )  95 

U,(cm/s) 

55 
35 

r n - 4  i 1 I 1 t 1 t 

FIGURE 1: Axial variation of (a) transmembrane flux, and @) 
solute concentration at the membrane wall with feed flow rate (la) 
as a parameter. Feed flow rates are 35, 55, and 95 cm/s. 
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CONCENTRATION POLARIZATION IN ULTRAFILTRATION 373 

value of 1.8E-07 cm2.s.' was used as the diffusion coefficient (D3 in all 
calculations. Due to non-availability of osmotic pressure data for PVA 224, the 
effect of osmotic pressure is neglected in this simulation work. This would result 
in a higher predicted flux. The gel polarization resistance for PVA 224 was 
estimated from the following equation (32): 

rp - 2.OE03ci.' (35) 

The inlet velocity profile was assumed to be parabolic, which corresponds 
to the physical situation in which an impermeable tubular section is smoothly 
connected to the membrane unit and the impermeable section is of sufficient 
length to allow the development of fully developed flow. In the following 
sections, we briefly describe some of the important simulation results along with 
some available experimental data. 

The important variables that affect the performance of a given UF system 
are: feed flow rates, operating pressure, feed concentration, viscosity and solute 
diffusivity. In this work, the viscosity and solute diffusivity is assumed to be 
constant. To evaluate the sensitivity of the axial development of gel concentration 
and transmembrane flux to these variables, parametric studies were performed for 
a wide range of operating conditions common in UF systems. 

The variations of transmembrane flux and surface solute concentration 
along the length of the membrane module are shown in Figs. l(a,b) for feed flow 
rates, u, ranging from 35 to 95 cm/s, respectively. In this simulation, the values 
of the parameters used are: transmembrane pressure, Apo= 10 kg/cm2; feed 
concentration, co= 1 %w, and solute rejection coefficient, p=l.O. A s  shown in 
Fig. l(a), the transmembrane flux decreases along the axial position at all feed 
flow rates, but an increase in feed rate results in higher flux. The surface solute 
concentration increases along the length for all feed flow rates, which is 
illustrated in Fig. l(b). Under the flow condition, the flow in tubular module was 
always laminar. In flow systems, the thickness of hydrodynamic and concentra- 
tion boundary layer decreases with increasing flow rates. Thus, an increase in 
flow rate reduces the polarization effect with consequent reduction in surface 
solute concentration. This expected behavior is shown in Fig. l(b)* 

For a given set of operating conditions, the feed concentration has a 
profound effect on transmembrane flux. The axial variation of transmembrane 
flux and surface solute concentration are shown in Figs. 2(a,b) for feed 
composition varied from 0.1 to 1.0 %w, respectively. The operating conditions 
used in this simulation are: transmembrane pressure, Apo= 10 kg/cm2; feed flow 
rate, u,=55 cm/s, and solute rejection coefficient, /3=l.O. The surface solute 
concentration increases along the length at all feed concentrations, while the 
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I 1 I I I I 

T4/A Membrane 
Tube Dia: 1.25 c m  
Module Length: 30 

- Pressure: 10 kg/crn 
Flowrate (U,): 55 cm/s 
PVA Solution 

I I I 

Tube Dio: 1.25 crn 
Module Length: 30 c p  X 

3 Pressure: 10 kq/cm - 
-, I Flowrate (UJ: 55 crn/s 

PVA Solution 1 
U 1 .o \ 

FIGURE 2: Axial variation of (a) transmembrane flux, and @) 
solute concentration at the membrane wall with feed concentration 
(c,,) as a parameter. 
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/-. c 
E 

3 T / 4  Membrane 
L Tube D ia :  1.25 crn 

$ 
Module Length: 30 crn  
F lowrote (U,,): 55 c m / s  
PVA Solution, 1% w t  

10-4 L I I I I I I 

10-5 I O - ~  lo-’  l o o  10’ l o 2  
DISTANCE DOWNSTREAM (crn) 

(a> 
61 I I I I I I 1 

T4/A Membrane 
Tube Dia: 1.25 c m  
Module Length: 30 cm 
Flowrate (UJ: 55 cm/s  

‘;r PVA Solution, 1% (wt) 

n 4 -  

v 

0 ’  I I I i I I 

1 0 - ~  1 0 - ~  I O - ~  lo-’  loo 10’  102 

DISTANCE DOWNSTREAM (cm) 

(b) 

FIGURE 3: Axial variation of (a) transmembrane flux, and @) 
solute concentration at the membrane wall with pressure @) as a 
parameter. 
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1 e-003  

n 
cn 

Oe+000 

T4/A M e m b r a i e  
F l o w r a t e s  (crn/s) 

95  0 
55 v 

Oe+000 5e-004 1 e-003 
PREDICTED FLUX (cm/s) 

FIGURE 4: 
solution (0.001-1.0 wtA) with model prediction. 

A comparison of measured flux of PVA aqueous 

permeate flux decreases. For a finite length of the membrane, an increase in feed 
concentration slightly increases the surface solute concentration dong the axial 
position, as shown in Fig. 2@).  However, the permeate flux is greatly affected 
by the feed concentration. In Fig. 2(a), the effect of feed concentration on 
permeate flux is illustrated, which clearly shows that an increase in feed 
concentration results in lower transmembrane flux. 

The effect of operating pressures on permeate flux and surface solute 
concentration is shown in Figs. 3(a,b). The conditions used for this case are: feed 
concentration, c,=l %w, feed flow rate, u,,=55 cmls, and solute rejection 
coefficient, P=l.O, with transmembrane pressure, Ap, varying from 2 to 10 
kg/cm*. For a finite length of the module, an increase in operating pressure re- 
sults in a slight increase in surface solute concentration. In fact, one would 
observe a substantial improvement of transmembrane flux without any relief in 
surface solute concentration. This is illustrated in Figs. 3(a,b). 

In Fig. 4, comparisons of average measured flux with model prediction 
are shown for three feed rates, The experimental data were taken from Nakao, 
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et al. (32). Experiments were carried out in a tubular ultrafiltration unit (cellulose 
acetate membrane, T4/A) with PVA 224 aqueous solution. The effective length 
of the module was 30 cm and the inside diameter of the tubular membranes was 
1.25 cm. The feed flow rates were in the range of 35 to 95 cm/s with operating 
transmembrane pressure varying from 2 to 10 kg/cm2. The model included the 
effect of gel polarization resistance, as given by Eq. 35. It appears that the model 
tends to overestimate the measured flux. If the gel-polarization effect is neglected, 
the model will grossly overestimate the measured flux. The transmembrane flux 
depends on four parameters: resistance of the membrane, resistance of the gel- 
polarization layer, transmembrane pressure and the osmotic pressure. In this 
work, due to non-availability of osmotic pressure data for PVA aqueous solution, 
the effect of osmotic pressure was neglected. As it can be seen by inspection of m. 13, the inclusion of osmotic pressure in the model would result in reduced 
transmembrane flux. Thus, with the inclusion of osmotic pressure effect in the 
model (assuming concentration-dependent osmotic data is available) one would 
expect to predict the measured flux closely. 

CONCLUSIONS 

The present study provides fundamental understanding of concentration 
polarization in ultrafiltration systems. The modeling of the system requires 
solution of coupled transport equations of momentum and solute continuity. The 
equations have been solved by an implicit finite-difference method. The model 
requires prior knowledge of membrane permeability, kinematic viscosity and 
density of feed solution, solute diffusivity and concentration-dependent osmotic 
pressure data (if available). In the absence of gel-polarization, membrane 
permeability is assumed constant and may be obtained from pure solvent flux 
data. In the case of gel polarization, the effect of surface solute concentration on 
the transmembrane flux is accounted for by including the resistance of the gel 
layer as a function of solute concentration at the membrane surface, as outlined 
by Nakao, et al. (32). The input specifications are feed flow rate, feed concentra- 
tion and inlet transmembrane pressure drop. The model does not require any 
specification of overall axial pressure drop. The wall permeation flux, surface 
solute concentration and pressure drop along the axial length are computed as a 
part of the iterative solution of the coupled momentum and solute continuity 
equations. 

From the present simulation studies, it is now possible to evaluate the 
effect of such variables as feed flow rate, feed concentration, solute diffusivity, 
kinematic viscosity and density of feed solution, operating pressure, and 
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membrane permeability (with or without gel-polarization effect) on concentration 
polarization in tubular ultrafiltration. This allows one to evaluate the performance 
of ultrafiltration systems for given operating and feed conditions without 
decoupling the transport equations and may also provide a useful tool to optimize 
operating conditions. The present model can be readily extended to hollow-fiber 
and thin-channel ultrafiltration systems. 

membrane area, cm2 
coefficient of Uij-l of Eq. 21 as defined by Eq. 23 
membrane permeability, cm . s-’/kg cm-2 
coefficient of Uij of Eq. 21 as defined by Eq. 24 
concentration of solute, %w 
dimensionless solute concentration, c/c, 
dimensionless surface solute concentration, c,/co 
surface solute or gel concentration, %w 
feed concentration, %w 
solute diffusivity, cm2 s-’ 
coefficient of Uij+, of Eq. 21 as defined by Eq. 25 
as defined in Eq. 31 
as defined in Eq. 31 
as defined in Eq. 31 
a constant in Eq. 21 as defined by Eq. 26 
coefficient of Cij-, of Eq. 22 as defined by Eq. 27 
coefficient of Cij of Eq. 22 as defined by Eq. 28 
coefficient of Cij+l of Eq. 22 as defined by Eq. 29 
a constant in Eq. 22 as defined by Eq. 30 
average permeate flux, cm s-’ 
pressure, kg -cm-2 
pressure on the permeate side, kg ‘cm-’ 
transmembrane pressure, (p-p,), kg .cm’* 
initial transmembrane pressure, kg cm-2 
dimensionless transmembrane pressure, 2@-p,,)/p~~~,,~~ 
Peclet number based on initial wall flux, v,&D 
filtrate volume at time t, cm3 
radial direction 
inside radius of tubular membranes, cm 
effective membrane resistance, kg cm”/cm s-I 
resistance of fouling layer, kg cm-’/cm . s-’ 
membrane resistance based on pure water flux, kg .cm-’/cm - s-’ 
resistance of polarization layer, kg .cm-2/cm - s-’ 
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1. 

2. 

3. 

4. 

5. 

resistance of concentration boundary layer, kg - c m % n  s-' 
resistance of gel layer, kg *cm-2/cm s-! 
dimensionless radial direction, r/ri 
normalized effective membrane resistance, 2vwdm/pu20,.v~ 
normalized gel-polarization layer resistance, 2 v , , & p ~ ~ ~ ~ . ~  
wall Reynolds number based initial wall flux, vwdi/u 
compressibility exponent of the cake, dimensionless 
time, s 
axial velocity component in z-direction, cm s-' 
inlet velocity at z=O, cm * s-l 
average inlet velocity, cm s-' 
dimensionless axial velocity, U/U,,,~~ 
dimensionless velocity at the module inlet, U&I~,, 
velocity in r-direction, cm-s-'; in Eqs. 1-2, v is velocity vectors 
initial wall flux, cm - s-' 
dimensionless radial velocity, v/vwo 
weight of particulate per unit volume of filtrate, g cm3 
axial direction 
dimensionless axial direction, v&~~, ,~g ,  
solute rejection coefficient at the membrane surface 
kinematic viscosity of feed solution, cm2 s1 
dynamic viscosity, g cm-' - s-' 
osmotic pressure of the solute in solution, kg *ern-' 
osmotic pressure of permeate, kg 
transmembrane osmotic pressure, 2(~-?rJpu~~~,, 
dynamic membrane constant, (kg cm-2)-' g-I 
density of feed solution 
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